

Video-worksheet

Harnessing redox reactions to provide electrical energy

Reducant

A reductant is a species that loses electrons to another species and is itself oxidised. Eg. $\text{Zn(s)} \rightarrow \text{Zn}^{2+}(\text{aq}) + 2\text{e}^-$, Zn(s) is the reductant

Oxidant

An oxidant is a species that gains electrons from another species and is itself reduced. Eg. $\text{Cu}^{2+}(\text{aq}) + 2\text{e}^- \rightarrow \text{Cu(s)}$, Cu^{2+} is the oxidant

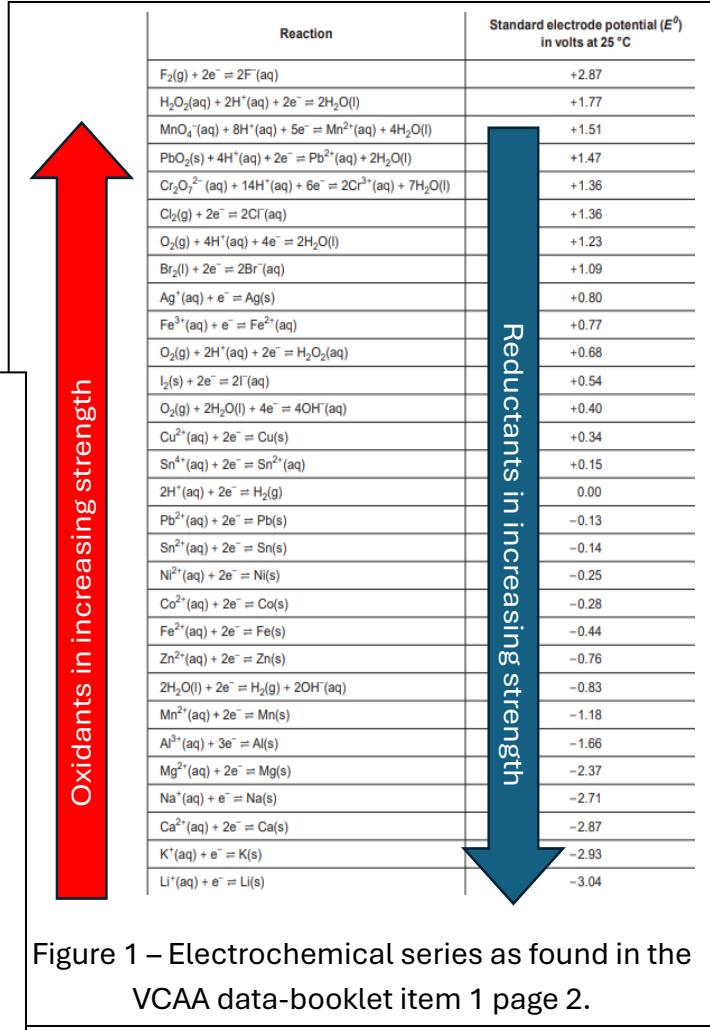
Cathode (+)

It is the electrode where the electrons in a battery flow to. It is where the oxidant is found.

Anode (-)

It is the electrode where the electrons in a battery come from. It is where the reductant is found.

Electromotive force (EMF)


EMF is the energy available to drive electrons around a circuit.

Two useful resources for the completion of this worksheet.

Six easy steps to design a galvanic cell.

- 1. Identify the strongest oxidant and the strongest reductant.**
- 2. Check that the reaction is spontaneous.**
- 3. Place the oxidant and reductant in separate half-cells.**
- 4. Choose the electrodes**
 - If the conjugate pair in the half cell contains a metal, use that metal as the electrode.**
 - If no metal is present, use an inert electrode.**
- 5. Connect the two electrodes with a wire.**
- 6. Connect the two half cells with a salt bridge**

Figure 2 – 6 steps to follow in constructing and labelling a viable galvanic cell.

The table lists 30 half-reactions in order of increasing standard electrode potential (E°) at 25 °C. The reactions are arranged from most positive to most negative potential.

Reaction	Standard electrode potential (E°) in volts at 25 °C
$\text{F}_2(\text{g}) + 2\text{e}^- = 2\text{F}^-(\text{aq})$	+2.87
$\text{H}_2\text{O}_2(\text{aq}) + 2\text{H}^+(\text{aq}) + 2\text{e}^- = 2\text{H}_2\text{O}(\text{l})$	+1.77
$\text{MnO}_4^-(\text{aq}) + 8\text{H}^+(\text{aq}) + 5\text{e}^- = \text{Mn}^{2+}(\text{aq}) + 4\text{H}_2\text{O}(\text{l})$	+1.51
$\text{PbO}_2(\text{s}) + 4\text{H}^+(\text{aq}) + 2\text{e}^- = \text{Pb}^{2+}(\text{aq}) + 2\text{H}_2\text{O}(\text{l})$	+1.47
$\text{Cr}_2\text{O}_7^{2-}(\text{aq}) + 14\text{H}^+(\text{aq}) + 6\text{e}^- = 2\text{Cr}^{3+}(\text{aq}) + 7\text{H}_2\text{O}(\text{l})$	+1.36
$\text{Cl}_2(\text{g}) + 2\text{e}^- = 2\text{Cl}^-(\text{aq})$	+1.36
$\text{O}_2(\text{g}) + 4\text{H}^+(\text{aq}) + 4\text{e}^- = 2\text{H}_2\text{O}(\text{l})$	+1.23
$\text{Br}_2(\text{l}) + 2\text{e}^- = 2\text{Br}^-(\text{aq})$	+1.09
$\text{Ag}^+(\text{aq}) + \text{e}^- = \text{Ag}(\text{s})$	+0.80
$\text{Fe}^{3+}(\text{aq}) + \text{e}^- = \text{Fe}^{2+}(\text{aq})$	+0.77
$\text{O}_2(\text{g}) + 2\text{H}^+(\text{aq}) + 2\text{e}^- = \text{H}_2\text{O}_2(\text{aq})$	+0.68
$\text{I}_2(\text{s}) + 2\text{e}^- = 2\text{I}^-(\text{aq})$	+0.54
$\text{O}_2(\text{g}) + 2\text{H}_2\text{O}(\text{l}) + 4\text{e}^- = 4\text{OH}^-(\text{aq})$	+0.40
$\text{Cu}^{2+}(\text{aq}) + 2\text{e}^- = \text{Cu}(\text{s})$	+0.34
$\text{Sn}^{4+}(\text{aq}) + 2\text{e}^- = \text{Sn}^{2+}(\text{aq})$	+0.15
$2\text{H}^+(\text{aq}) + 2\text{e}^- = \text{H}_2(\text{g})$	0.00
$\text{Pb}^{2+}(\text{aq}) + 2\text{e}^- = \text{Pb}(\text{s})$	-0.13
$\text{Sn}^{2+}(\text{aq}) + 2\text{e}^- = \text{Sn}(\text{s})$	-0.14
$\text{Ni}^{2+}(\text{aq}) + 2\text{e}^- = \text{Ni}(\text{s})$	-0.25
$\text{Co}^{2+}(\text{aq}) + 2\text{e}^- = \text{Co}(\text{s})$	-0.28
$\text{Fe}^{2+}(\text{aq}) + 2\text{e}^- = \text{Fe}(\text{s})$	-0.44
$\text{Zn}^{2+}(\text{aq}) + 2\text{e}^- = \text{Zn}(\text{s})$	-0.76
$2\text{H}_2\text{O}(\text{l}) + 2\text{e}^- = \text{H}_2(\text{g}) + 2\text{OH}^-(\text{aq})$	-0.83
$\text{Mn}^{2+}(\text{aq}) + 2\text{e}^- = \text{Mn}(\text{s})$	-1.18
$\text{Al}^{3+}(\text{aq}) + 3\text{e}^- = \text{Al}(\text{s})$	-1.66
$\text{Mg}^{2+}(\text{aq}) + 2\text{e}^- = \text{Mg}(\text{s})$	-2.37
$\text{Na}^+(\text{aq}) + \text{e}^- = \text{Na}(\text{s})$	-2.71
$\text{Ca}^{2+}(\text{aq}) + 2\text{e}^- = \text{Ca}(\text{s})$	-2.87
$\text{K}^+(\text{aq}) + \text{e}^- = \text{K}(\text{s})$	-2.93
$\text{Li}^+(\text{aq}) + \text{e}^- = \text{Li}(\text{s})$	-3.04

Figure 1 – Electrochemical series as found in the VCAA data-booklet item 1 page 2.

1. Using silver and copper metals as well as 1M solutions of AgNO_3 and CuSO_4 draw a labelled, functional galvanic cell.

a. Label the following:

- Anode
- Cathode
- Electrolyte in each half cell
- Direction of electron flow
- Direction of negative ion flow
- write the oxidation and reduction half equations

Oxidation _____

Reduction _____

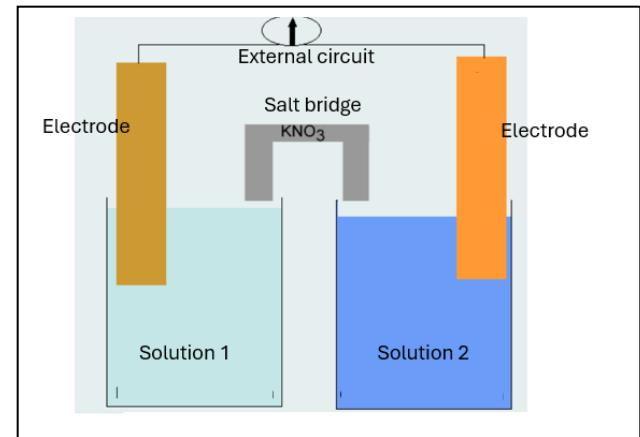


Figure 3 – Template to question 1

2. A galvanic cell uses the following half-cells

a. On a diagram of the cell label the following:

- Anode
- Cathode
- Electrolyte in each half cell
- Direction of electron flow
- Direction of negative ion flow
- write the oxidation and reduction half equations

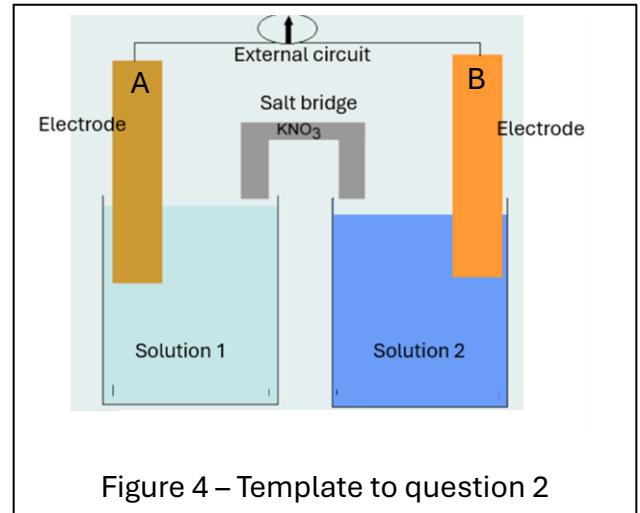


Figure 4 – Template to question 2

b. Indicate the material each electrode is

made of. A. _____ B. _____

c. Identify a suitable electrolyte for the salt bridge and explain why it is suitable.

3. A galvanic cell is constructed using a:

- tin half-cell with $\text{Sn}^{2+}(\text{aq})$ and $\text{Sn}^{4+}(\text{aq})$
- copper half-cell with $\text{Cu}(\text{s})$ and $\text{Cu}^{2+}(\text{aq})$
- $\text{NaNO}_3(\text{aq})$ salt bridge

a. Draw a diagram of the cell, in the space provided on the right. clearly label the:

- anode and cathode (show polarity)
- material electrodes are made of
- direction of electron and positive charge flow.
- electrolyte in each half cell
- oxidation and reduction half equations

Oxidation _____

Reduction _____

b. Explain the role of $\text{NaNO}_3(\text{aq})$.

4. A student attempts to construct a galvanic cell using magnesium metal and a carbon rod as electrodes and $Mg(NO_3)_2$ and $Mn(NO_3)_2$ solutions. The cell is shown on the right, fig. 5 and once connected undergoes a redox reaction.

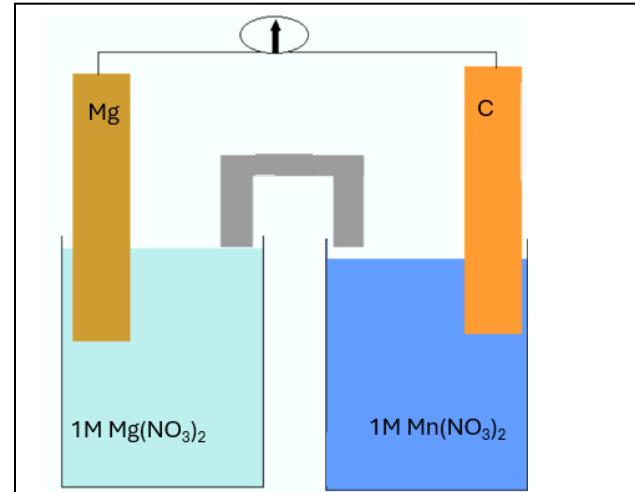
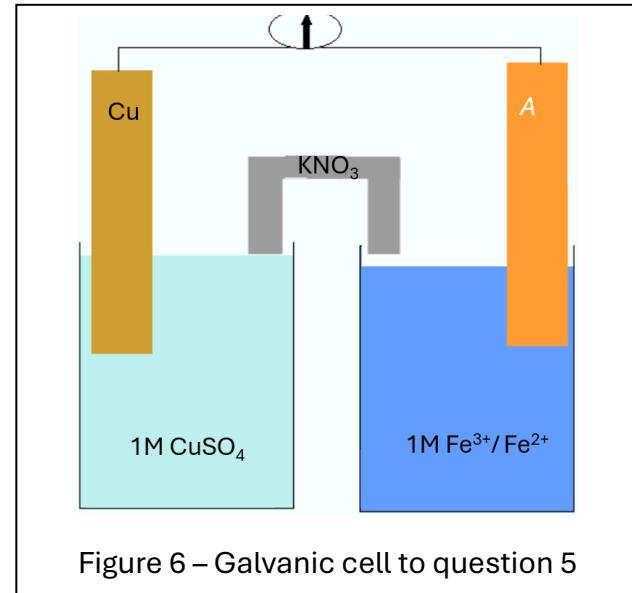



Figure 5 – Galvanic cell to question 4

a. Is this a viable galvanic cell? Justify your answer.

b. What is seen forming on the Mg electrode after some time of cell operation. Justify your answer with two half equations.

5. The galvanic cell shown on the right was constructed by a student.

a. Label or write the:

- anode and cathode
- direction of electron and anion flow.
- oxidation and reduction reactions.

Oxidation _____

Reduction _____

b. What is the impact on the cell EMF if the electrolyte in the salt bridge is changed to $\text{Zn}(\text{NO}_3)_2(\text{aq})$? Justify your answer.

c. Identify the substance electrode A is made from. Explain your choice.
