

Solutions to Short Answer Questions – Water Energy & Phase Changes

1.

a. Energy required to raise the temperature of 1 kg of a substance by 1 °C.

1----mark Water has a specific heat capacity of 4.18 kJ/kg·°C. Heating 1 kg of water by 1 °C requires 4.18 kJ

1----mark.

b. The energy required to convert 1 kg of liquid water into gas at 100 °C without a change in temperature. 1----mark

Data Booklet gives the latent heat of vaporization at 100°C as 40.7 kJ/mol

Water has a latent heat of vaporisation of 2261 kJ kg⁻¹.

This means 2261 kJ of energy is required to vaporise 1 kg of water at 100 °C.

Or

2.26 kJ g⁻¹

1----mark for either answer.

2. Energy is used to break hydrogen bonds between water molecules rather than increasing kinetic energy. 1----mark

Temperature remains constant until all ice melts 1----mark

3. Step 1: Heat the ice to 0 °C

$$Q = mc\Delta T$$

Values (from Data Booklet):

$$Q = 0.100 \text{ kg} \times 2.1 \text{ kJ/Kg} \times 25 = 5.3 \text{ kJ} \quad 1----mark$$

Step 2 : Liquefy the 0.100kg of H₂O

$$Q = mL_f = 0.100 \text{ kg} \times 344 \text{ kJ/Kg} = 34.4 \text{ kJ} \quad 1----mark$$

$$\text{Total energy needed (kJ)} = 40 \text{ kJ} \quad 1----mark$$

$$Q_{\text{total}} = Q_1 + Q_2 = 5.25 + 33.4 = \boxed{38.65 \text{ kJ}}$$

4.
$$\begin{aligned} Q &= mc\Delta T & 1\text{----mark for correct formula} \\ &= 0.050 \times 4.18 \times 10 = 2.09 \text{ kJ} & 1\text{----mark for correct calculation} \\ & & 1\text{----mark for correct sig figs.} \end{aligned}$$
5. *Transpose the following formula to make mass the subject.*
$$\begin{aligned} \Rightarrow Q &= m \times c \times \Delta T & 1\text{----mark correct formula} \\ \Rightarrow 1200 &/(4.18 \times 50.0) & 1\text{----mark correct value} \end{aligned}$$
6.
$$\begin{aligned} Q &= 0.100 \times 4.18 \times 90 = 37.62 \text{ kJ} & 1\text{----mark for correct amount of energy to} \\ & \text{change the temperature to } 100^\circ\text{C} & \\ Q &= 40.7 \text{ kJ} / 0.018 \text{ kg} & 1\text{----mark for correct conversion of latent} \\ & \text{heat of vaporisation from } 40.7 \text{ kJ/mol to } 2.26 \text{ kJ/kg} & \\ Q &= 0.100 \text{ kg} \times 2260 \text{ kJ/kg} = 226 \text{ kJ} & 1\text{----mark for correct amount of energy} \\ & \text{needed to vaporize } 100\text{g of water.} & \\ \text{Total amount of energy, in kJ, needed} & & \\ \Rightarrow 37.6 + 226 &= 264 & 1\text{----mark} \end{aligned}$$
7. *Strong intermolecular bonding composed of hydrogen bonds, present in water require greater energy to overcome. 1----mark (mention of intermolecular forces must be made)*
Molecules of similar size without hydrogen bonds need less energy to increase temperature. 1----mark
8. *Energy is used to break intermolecular bonds 1----mark rather than increase kinetic energy. Temperature stays constant until all liquid vaporises. 1----mark*

9. $Q = 10.0 \text{ g} \times 4.18 \text{ kJ/kg} \times \Delta T$

$\Rightarrow \Delta T = 0.400 \text{ kJ} / (0.0100 \times 4.18)$ 1----mark for correct formula

$\Rightarrow \Delta T = 9.57$ 1----mark for correct change in temp

$\Rightarrow \text{Final temp} = \text{initial} + \Delta T$

$\Rightarrow 25.0 + 9.6 = 34.6^\circ\text{C}$ 1----mark correct final answer.

10. Parts A (solid heating), C (liquid heating) and E (gas heating) 1----mark

A, B and E represent temperature change of a single phase. Addition of heat energy is converted to a greater kinetic energy of the particles. 1---mark

The increase in kinetic energy shows up as a temperature increase and the relationship between temperature and energy is given by the formula $Q = m \times C \times \Delta T$

1----mark (to get the mark the student must have described the formula as the relationships between energy and temperature rise)

11. *The formula $Q = m \times L$ applies to the flat (horizontal) sections of the phase-change curve, where temperature remains constant namely sections B (melting) and D (fusion)*
1----mark.

During these phases, energy is used to overcome intermolecular forces (break hydrogen bonds or other attractions) rather than increasing kinetic energy, which would lead to a temperature increase. 1----mark

12.

Water has a high specific heat capacity ($4.18 \text{ J/g} \cdot ^\circ\text{C}$), it absorbs or releases large amounts of energy with only small changes in temperature. 1---mark

Melbourne is near the ocean, so the surrounding water absorbs heat during the day and releases heat at night, moderating air temperatures. 1---mark

Alice Springs is inland, far from large bodies of water, so there is no moderating effect, and temperatures change more drastically. 1---mark

Hydrogen bonds are stronger than dipole-dipole and dispersion forces, so water absorbs more energy to increase temperature or vaporise. This absorbed energy buffers temperature changes, moderating coastal climates. 1---mark (to get this mark some distinction must be made between h-bonding and other forms eg dipole-dipole in the capacity of water to absorb a large amount of energy before an increase in temperature).

13. *Hydrogen bonding is a particularly strong form of intermolecular bonding, which increases the energy required to change temperature (specific heat) and to vaporize water (latent heat). 1----mark*

High specific heat stabilizes aquatic temperatures, preventing sudden changes 1----mark

High latent heat makes it harder for water to evaporate and dry out inland aquatica ecosystems. 1----mark

Stable environment allows survival of aquatic life by reducing the damage from sudden temperature changes that may reduce the amount of available oxygen in the water as well as do structural damage to the organism through heat stress. 1----mark (any other plausible temperature dependent stress or harm can be awarded the mark.)