Acid/Base terminology

1.	which species is the conjugate base of H ₂ CO ₃ ?
A. CO ₃ ² B. HCO ₃ C. H ₃ O ⁺ D. OH ⁻ E. H ₃ CO	3
2.	In the reaction
	$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$
Which i	s a conjugate acid–base pair?
A. NH ₃ , B. NH ₃ , C. H ₂ O, D. NH ₄ ⁺ E. H ₂ O,	/ он- / он- - / он-
3.	Which base is strongest in water?
A. NO ₃ ⁻ B. Cl ⁻ C. CH ₃ C D. SO ₄ ²	00 ⁻
4.	Which acid is diprotic?
A. HNO B. HCl C. CH₃C D. H₃PC E. H₂SO	ООН О ₄
5. A. CH ₃ C B. H ₃ PC C. CH ₃ C D. NH ₄ ⁺ E. NH ₃	0 ₄ H₂COOH

- **6.** Which reaction represents the **second ionisation** of sulfuric acid?
- A. $H_2SO_4 \rightarrow H^+ + SO_4^{2-}$
- B. $H_2SO_4 \rightarrow H^+ + HSO_4^-$
- C. $H_2O \rightarrow H^+ + OH^-$
- D. $SO_4^{2-} \rightarrow H^+ + SO_4^{3-}$
- E. $HSO_4^- \rightarrow H^+ + SO_4^{2-}$
- **7.** Which species is **amphiprotic**?
- A. CO₃²⁻
- B. H₃O⁺
- C. NO₃
- D. Na⁺
- E. HCO₃-
- 8. Which statement is **correct**?
- A. All amphoteric substances are amphiprotic
- B. Amphoteric substances react only with acids
- C. Amphiprotic substances donate and accept protons
- D. Amphoteric means only proton transfer
- E. Amphiprotic substances react only with bases
- 9. Which statement is correct?
- A. Strong acids have weak conjugate bases
- B. Weak acids have weak conjugate bases
- C. Strong acids have strong conjugate bases
- D. Acid strength does not affect conjugate strength
- E. Conjugate acids and bases have equal strength
- 10. In the reaction

$$H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+$$

 $H_2PO_4^-$ is acting as a:

- A. Base only
- B. Acid only
- C. Spectator ion
- D. Salt
- E. Both an acid and a base

Short-answer questions

1.	Define the term conjugate acid-base pair.
2.	Identify the conjugate acid and conjugate base in the reaction:
	$HCI + H_2O \rightarrow H_3O^+ + CI^-$
3	Explain why CH₃COO⁻ is a stronger base than NO₃⁻
٥.	Explain why engage is a stronger state than reg in
4.	, and an
	answer.
5.	Al ₂ O ₃ undergoes two reactions as shown below.
	$Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(l)$
	and
	$Al_2O_3(s) + 2NaOH(aq) + 3H_2O(l) \rightarrow 2NaAl(OH)_4(aq)$
	i. Compare and contrast an amphoteric substance and an amphiprotic substance.

Consider	the fo		species, S								
	Wr i.	llowing ite the I SO	species, S palanced (l ₄ ²⁻ (aq) + H	5O4 ²⁻ , NC equation I ₂ O(I)	o ₃ ⁻ and n for th	CH₃C(OO . ction o	f each	base v	 ater.	
	Wr	llowing ite the I SO	species, S	5O4 ²⁻ , NC equation I ₂ O(I)	o ₃ ⁻ and n for th	CH₃C(OO . ction o	f each	base v	 ater.	
	Wr i.	ollowing ite the I SO	species, S palanced (l ₄ ²⁻ (aq) + H	SO ₄ ²⁻ , NC equation I ₂ O(I)	o)₃¯ and on for th order on for th one in factorial the second th	CH₃Co	OO .	f each	base v	 ater.	
a.	Wr i. ii. iii.	ollowing ite the I SO NC	species, S palanced (1 ₄ 2-(aq) + F D ₃ -(aq) + H	5O ₄ ²⁻ , NC equation I ₂ O(I) ₂ O(I)) + H ₂ O($0)_3$ and 0 for the 0 0 0 0 0 0 0 0 0 0	CH₃Cone rea	OO ⁻ . ction o	f each	base v	ater.	
a.	Wr i. ii. iii.	ollowing ite the I SO NC	species, S palanced of 1 ₄ ²⁻ (aq) + H D ₃ -(aq) + H	5O ₄ ²⁻ , NC equation I ₂ O(I) ₂ O(I)) + H ₂ O($0)_3$ and 0 for the 0 0 0 0 0 0 0 0 0 0	CH₃Cone rea	OO ⁻ . ction o	f each	base v	ater.	
a.	Wr i. ii. iii.	ollowing ite the I SO NC	species, S palanced of 1 ₄ ²⁻ (aq) + H D ₃ -(aq) + H	5O ₄ ²⁻ , NC equation I ₂ O(I) ₂ O(I)) + H ₂ O($0)_3$ and 0 for the 0 0 0 0 0 0 0 0 0 0	CH₃Cone rea	OO ⁻ . ction o	f each	base v	ater.	
a.	Wr i. ii. iii.	ollowing ite the I SO NC	species, S palanced of 1 ₄ ²⁻ (aq) + H D ₃ -(aq) + H	5O ₄ ²⁻ , NC equation I ₂ O(I) ₂ O(I)) + H ₂ O($0)_3$ and 0 for the 0 0 0 0 0 0 0 0 0 0	CH₃Cone rea	OO ⁻ . ction o	f each	base v	ater.	