Friday Worksheet

Volumetric 3

1) The change in pH as a 0.10 M solution of a NaOH is added to 20.0 mL of a 0.10 M solution of a ethanoic acid is shown below.

Name	pH range	Colour change	
		Acid	Base
Thymol blue	1.2-2.8	red	yellow
Methyl orange	3.1-4.4	red	yellow
Bromophenol blue	3.0-4.6	yellow	blue
Methyl red	4.2-6.3	red	yellow
Bromothymol blue	6.0-7.6	yellow	blue
Phenol red	6.8-8.4	yellow	red
Phenolphthalein	8.3-10.0	colourless	red

Refer to the acid-base indicator data provided and identify the indicator that would be *least* suitable to detect the end point of this neutralisation reaction. Explain why.

- 2) A 30.00 mL aliquot of 0.200 M CH $_3$ COOH (ethanoic acid) is titrated with 0.160 M Ca(OH) $_2$ solution.
- a) Give the equation for the reaction between the ethanoic acid and Ca(OH)2

b) What volume of the Ca(OH)₂ solution is required to completely react with the ethanoic acid?

- 3) Consider the titration curve on the right.
- a) What is the likely acid being used from the list below? Explain
- i) HCI
- ii) H₂SO₄
- iii) NH₄+

b) Explain, using your chosen acid as an example, why the equivalence point is at a pH significantly above 7.