Video worksheet – secondary cells.

- 1. For each cell above complete the following
 - a. When discharging :
 - i. clearly label the anode and cathode and give the polarity of each.
 - ii. give the cell voltage at standard conditions
 - iii. give the half reactions taking place at each electrode
 - iv. give the balanced, states included, overall cell reaction taking place
 - v. how does the mass of the anode and cathode change?

Increase	decrease	unchanged
----------	----------	-----------

- b. When recharging:
 - i. clearly label the anode and cathode and give the polarity of each.
 - ii. indicate the polarity of the power supply terminals
 - iii. give the half reactions taking place at each electrode
 - iv. give the balanced, states included, overall cell reaction taking place
 - v. how does the mass of the anode and cathode change?

Increase decrease unchanged

- 2. When a Ni-Cd battery is discharging, the <u>unbalanced</u>, overall equation is shown below. NiO₂(s) + H₂O(l) + Cd(s) \rightarrow Ni(OH)₂(s) + Cd(OH)₂(s)
 - a. Give the balanced half equation for the reaction occurring at the cathode during **discharge**.

- c. Give the balanced half equation for the reaction occurring at the negative electrode during **recharge**.
- d. Give the oxidant for the overall reaction during **recharge**.
- 3. The overall discharge reaction for a lead-acid battery is shown below. $Pb(s) + PbO_2(s) + 4H^+(aq) + 2SO_4^{2-}(aq) \rightarrow 2PbSO_4(s) + 2H_2O(I)$ Solid lead sulfate (PbSO₄) is formed at both the anode and cathode.
 - a. Give a balanced chemical equation for the reaction at the anode during recharge
 - b. Give a balanced chemical equation for the reaction at the anode during discharge
 - c. What is the reducing agent during discharge?