1) The energy profile diagram below represents a particular reaction. One graph represents the uncatalysed reaction and the other graph represents the catalysed reaction

Which of the following best matches the energy profile diagram?

	$\begin{gathered} E_{\mathrm{a}} \\ \text { uncatalysed reaction } \\ \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta H \\ \text { catalysed reaction } \\ \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$
A.	40	-140
B.	90	-140
C.	40	-50
D.	90	-50

Solution
2) An equation for the complete combustion of methanol is
$2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}$ for this equation would be
A. $+726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+1452 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-1452 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Solution
3) The kinetic energy of a sample of gas in a container of fixed volume is represented by the distribution curve shown in
Graph 1 below. One change was made to the sample and the resulting distribution curve of kinetic energy is shown in Graph 2.

Which one of the following statements explains the change from Graph 1
to Graph 2?
A. The average kinetic energy of the gas molecules decreased.
B. More gas, at the same temperature, was added to the container.
C. More collisions occurred between gas particles.
D. The temperature of the gas was increased.

Solution
4) The four equations below represent different equilibrium systems.

Equation 1	$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$	$\Delta H=-180 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Equation 2	$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$	$\Delta H=-46 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Equation 3	$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	$\Delta H=93 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Equation 4	$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$	$\Delta H=205 \mathrm{~kJ} \mathrm{~mol}^{-1}$

After equilibrium was established in each system, the temperature was decreased and the pressure was increased.
In which equilibrium system would both changes result in an increase in yield?
A. Equation 1
B. Equation 2
C. Equation 3
D. Equation 4

Solution

Solution will appear here

5) The molar heat of combustion of pentan-1-ol, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$, is 3329 kJ mol^{-1}.
$\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}\right)=88.0 \mathrm{~g} \mathrm{~mol}^{-1}$
The mass of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$, in tonnes, required to produce 10800 MJ of
energy is closest to
A. 0.0286
B. 0.286
C. 2.86
D. 286

Solution
6) Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, in aqueous solution at room temperature decomposes slowly and irreversibly to
form water, $\mathrm{H}_{2} \mathrm{O}$, and oxygen, O_{2}, according to the following equation. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}<0$
a. What effect will increasing the temperature have on the rate of O_{2} production? Use collision theory to explain your answer.

Solution
b) When a small lump of manganese(IV) dioxide, MnO_{2}, is added to the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution, the rate of O_{2} production increases, but when powdered MnO_{2} is added instead, the rate of O_{2} production is greatly increased. The MnO_{2} is recovered at the end of the reaction. State the function of MnO_{2} in this reaction.

Solution will appear here

Solution

c) A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is labelled '10 volume' because 1.00 L of this solution produces 10.0 L of O_{2} measured at standard laboratory conditions (SLC) when the $\mathrm{H}_{2} \mathrm{O}_{2}$ in the solution is fully decomposed.
Calculate the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the '10 volume' solution, in grams per litre, when this solution is first prepared.

Solution
d) Propose a method to determine how quickly a solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposes when stored at a particular temperature.

Solution

