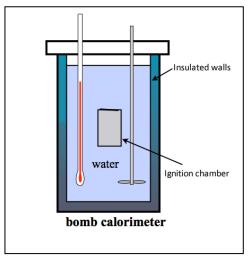

Revision task 5

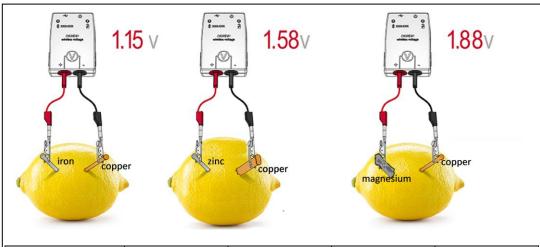
- Hydrogen iodide is formed in a 1.00 litre vessel according to the equation below.
 I₂(g) + I₂(g) → 2HI(g) ΔH = + 52 kJ
 The graph on the right shows the concentration of each reactant and product over time.
 - a) Give an expression for the equilibrium constant for this reaction.


- b) Calculate the value of the equilibrium expression, at this temperature, between t=0 and t=10
- c) On the graph shown, indicate how the concentration of each species changes over time, in the 1 litre reaction vessel, when:
 - the volume is doubled at t = 10. Indicate how the concentrations change without giving specific values for each species
 - at t = 20 an amount of 0.60 mol of HI is added to the reaction vessel and the system returns to equilibrium before t =30. Clearly show the value of the concentration of each species at t = 30.
 - at t = 30, the temperature is increased and equilibrium is once again reached before t = 40. Indicate how the concentrations change without giving specific values for each species.
 - at t = 40 a catalyst is added. Indicate how the concentrations change without giving specific values for each species
- d) Indicate how the rate of the backward and forward reactions change over time with each change stated in c) above.

- 2) A 25.00 gram sample of iodine is placed in a bomb calorimeter with 3.46 grams of hydrogen gas. The reaction takes place according to the equation below $I_2(g) + H_2(g) \rightarrow 2HI(g) \Delta H = +52.0 \text{ kJ}$. The temperature of the 100.00 grams of water changes by 10.00 °C.
 - a) Calculate the amount, in mol, of the following species present in the ignition chamber when the water has reached its final temperature.

.

i. l₂


ii. H₂

iii. HI

b) When calculating the answer to a) above, what is assumed?

c) Calculate the value of the equilibrium expression of the mixture in the ignition chamber.

 A student conducted the experiment as pictured below. Three trials were conducted for each different metal and the results were averaged to get the voltage of each lemon cell.

Metal	Trial 1(V)	Trial 2(V)	Trial 3 (V)	Average (V)
Iron	1.00	1.30	1.15	1.15
Zinc	1.50	1.34	1.90	1.58
Magnesium	2.00	1.55	2.09	1.88

Conclusion- the reactivity of a metal is directly related to the voltage it produces in a galvanic cell.

- a) State a plausible hypothesis being tested by the student.
- b) Discuss, with reference to the results, as to whether the hypothesis is supported or
- c) Identify:
 - i. the dependent variable
 - ii the independent variable
 - iii. four other variables that must be controlled.

	d)	Write an evaluation of the student's experimenta • identify and explain one strength of the experim • suggest two improvements to the experimental • comment on the validity of the conclusion bases results.	nental design design and justify your suggestions
	e)	Suggest one other investigation that can be condunderstanding of galvanic cells and add value to t	
4)	On a)	the right is a list of items used to construct a galva In the box below draw the galvanic cell clearly labelling the following electrodes in each half-cell salt bridge and its composition - solutions in each half-cell - direction of electron flow - direction of negative ion flow - polarity of each electrode - the reactions occurring in each half-cell	 Copper wire and copper metal A supply of Cl₂ gas delivered at 1.00 atm pressure Platinum metal wire A 1.0M solution of a NaCl solution Filter paper A concentrated potassium nitrate solution Voltmeter Glassware (beakers, gas electrode) A 1.0M solution of a CuSO₄ solution
	b)	Is the information given in the E° table of the data predict the voltage registered by the voltmeter? E	-