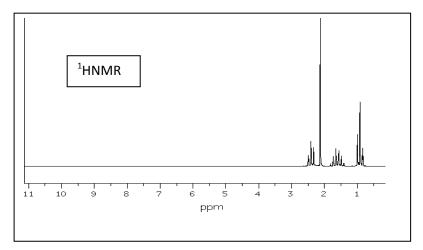
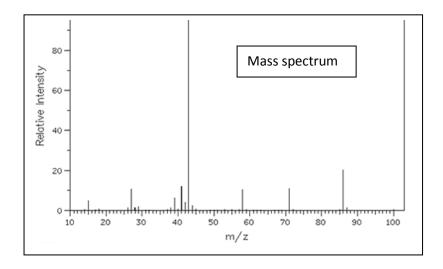
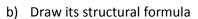

Revision 2 - analytical chemistry.

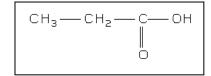

- 1) An unknown compound was analysed and found to have an empirical formula C₅H₁₀O.
- a) Consider the IR spectrum. strong absorption at 1700 indicates a C=O bond. Coupled with the molecular formula we can deduce it is a ketone C=O.
- b) What information about the molecule can you derive from the spectrum? $C_5H_{10}O$
- c) Determine the molecular formula of the compound
- d) Draw its structural formula

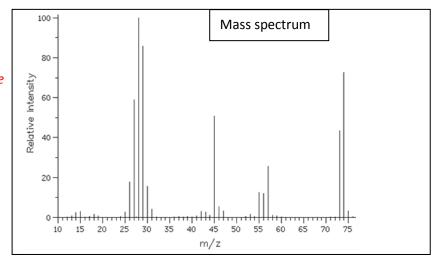


- e) Consider the mass spectrum.

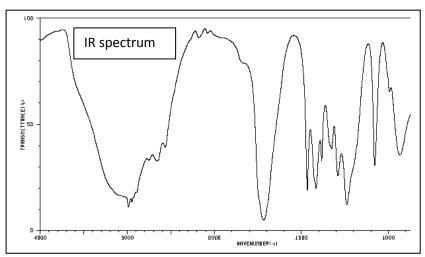
 What fragment formed the base peak. COCH₃⁺ or CH₃CH₂CH₂⁺ or CH₃CH₂CH₂COCH₃⁺²
- f) Explain the peak at m/z 87 in the mass spectrum. It is due to the ¹³C isotope.

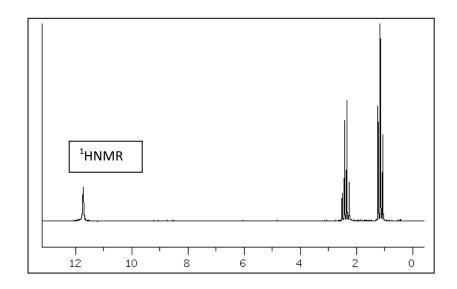




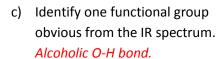

- 2) Another unknown compound was analysed and also found to have the molecular formula $C_3H_6O_2$.
 - a) Consider the IR spectrum.

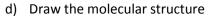
 What information about the molecule can you derive from the spectrum?

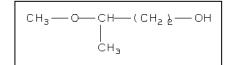

 It is a carboxylic acid. It has the characteristic acidic O-H absorption between 2500 -3500



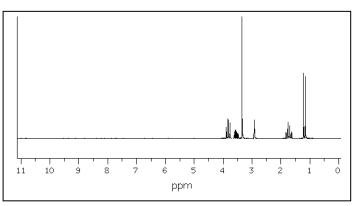
- c) What fragment produced the peak at:
 - m/z 45 in the mass spectrum? $COOH^{+}$
 - m/z 74 in the mass spectrum? $CH_3CH_2COOH^+$

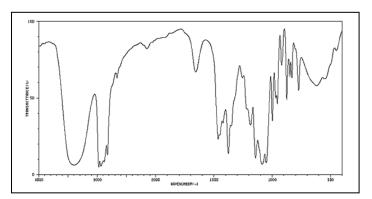


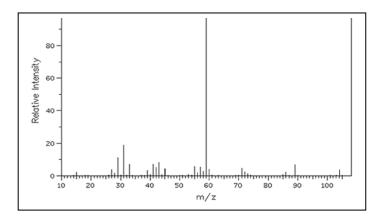

3) An unknown compound was analysed and found to have the molecular formula C₅H₁₂O₂. The compound produces an aldehyde when oxidised. Below are the compound's ¹HNMR, IR and mass spectra


The ¹HNMR spectrum is shown on the right. The signal at 3.6 ppm is a sextet.

- a) How many groups of chemically different hydrogens exist? 6
- b) What group of equivalent hydrogens could have produced the singlet at 3.3 ppm?
 Use the data sheet.
 From the information given above we know it is a


primary alcohol hence R-CH₂-OH





e) What fragment could have produced the peak at m/z 59? CH₃OCHCH₃⁺

