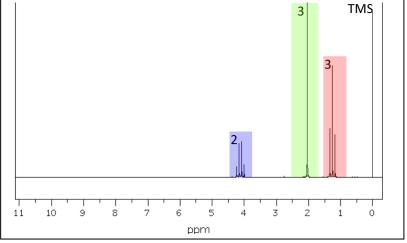
Lesson 4 ¹HNMR

When interpreting HNMR spectra don't forget>

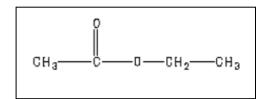
- Each signal represents a non-equivalent hydrogen
- The integration tells us about the relative number of hydrogens that caused the signal
- The splitting pattern tells us something about the neighbouring non-equivalent hydrogens


A compound has the molecular formula $C_4H_8O_2$. Its 1HNMR spectrum is shown on the right.

What can be deduced from the spectrum.

i. There are three non-equivalent hydrogens

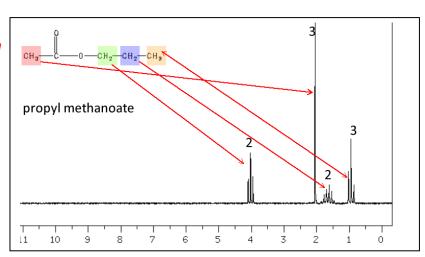
ii. Most likely there is a:


 CH₃ next to a CH₂ group of hydrogens as indicated by the red shaded signal. Its integration is 3 so it represents, most likely 3 hydrogens being split by a

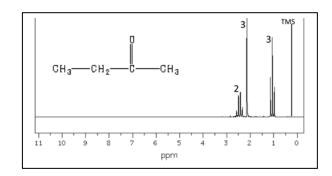
neighbouring CH₂ according to the n+1 rule.

- CH₃ on its own represented by the green shaded hydrogens.
- CH₂ next to a CH₃ as indicated by the blue shaded hydrogens. It is most likely close to a electronegative atom, such as oxygen, as indicated by its chemical shift.

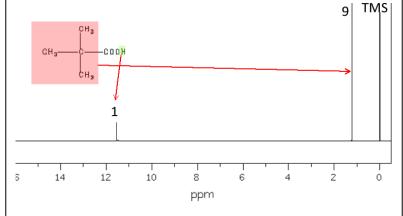
The most likely structure is shown on the right.

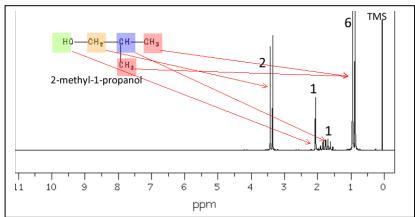


- 1) A compound has the molecular formula $C_5H_{10}O_2$. Its HNMR spectrum is shown below.
 - a) Draw its structural formula
 - b) Name the compound.


Students should use the data from the data sheet to identify the correct isomer.

Two possible isomers can give the splitting pattern shown.


Propyl ethanoate and methyl butanoate. Using the chemical shifts given in the data sheet students should be able to select the right one.


- c) An unknown compound has the molecular formula C_4H_8O .
- i. What can you say about the equivalent hydrogens that formed the signals at:
- 2.5 ppm it is most likely a CH₂ group, with 3 non-equivalent hydrogens as neighbours. Since it is chemically shifted more to the right than any other hydrogen it is most likely closer to electronegative oxygen.


- 2.1 ppm it is most likely a CH₃ with no neighbouring hydrogens.
- 1.0 ppm it is most likely a CH₃ with two neighbouring non-equivalent hydrogens.
- ii. Draw the structural formula of the molecule.
 - 2) Another compound also has the molecular formula C₅H₁₀O₂. Its HNMR spectrum is shown below.
 - a) Draw its structural formula
 - b) Name the compound.

- 3) A compound has the molecular formula $C_4H_{10}O_.$ Its HNMR spectrum is shown below. The peak signal at 1.75 ppm is split into a nonet (9).
 - a) Draw its structural formula
 - b) Name the compound.

- 4) A compound has the molecular formula C₄H₈Cl₂. Its HNMR spectrum is shown below.
 - a) Draw its structural formula
 - b) Name the compound.

