Redox reactions – half equations Lesson 2

All redox reactions can be divided into two equations called *half equations*, representing the reduction and oxidation processes of the overall redox reaction.

The following rules apply to writing half equations

- 1) Balance the equation for all elements other than H or O
- 2) Balance for oxygen by adding water to the side deficient in oxygen.
- 3) Balance for hydrogen by adding H⁺ to the side deficient in H
- 4) Balance for charge by adding electrons to the most positive side.

Example Write a half equation for the reduction of $Cr_2O_7^{-2}(aq) \rightarrow Cr^{3+}(aq)$ in an acid solution

- 1) Balance the equation for all elements other than H or O $Cr_2O_7^{-2}(aq) \rightarrow 2Cr^{3+}(aq)$
- 2) Balance for oxygen by adding water to the side deficient in oxygen.

```
Cr_2O_7^{-2}(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)
```

3) Balance for hydrogen by adding H⁺ to the side deficient in H

```
Cr_2O_7^{-2}(aq) + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)
```

4) Balance for charge by adding electrons to the most positive side.

```
Cr_2O_7^{-2}(aq) + 14H^+(aq) + 6e \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)
```

- 1) Write the half equations that occur in an acid solution for:
- a) $MnO_4^{-}(aq) / Mn^{2+}(aq)$
- b) CH₃OH(aq) / HCOOH(aq)
- c) SO_4^{2-} (aq)/ SO_2 (g)
- d) NO_3^- (aq) / $N_2O_2(g)$
- 2) Write the half equations that occur in an alkaline solution for the reactions shown below. <u>Click</u> to revise how to change the half equation taking place in an acid solution to one taking place in alkaline solution. The first one is done for you.

```
MnO_4 (aq) / Mn^{2+} (aq)
```

Balance the equation as normal for an acid solution.

Balance the equation for all elements other than H or O

 $MnO_4^-(aq) \rightarrow Mn^{2+}(aq)$

Balance for oxygen by adding water to the side deficient in oxygen.

 $MnO_4^-(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l)$

Balance for hydrogen by adding H⁺ to the side deficient in H

 $MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow Mn^{2+}(aq) + 4H_2O(l)$

Balance for charge by adding electrons to the most positive side.

 $MnO_4^-(aq) + 8H^+(aq) + 5e \rightarrow Mn^{2+}(aq) + 4H_2O(I)$

Extra steps

Replace H⁺ by adding an equivalent number of OH⁻ ions to both sides and then eliminate water molecules as they appear on both sides.

```
MnO_4^-(aq) + 8H^-(aq) + 8OH^-(aq) + 5e \rightarrow Mn^{2+}(aq) + 4H_2O(I) + 8OH^-(aq)
=> MnO_4^-(aq) + 8H_2O(I) + 5e \rightarrow Mn^{2+}(aq) + 4H_2O(I) + 8OH^-(aq)
```

=> $MnO_4^-(aq) + 4H_2O(l) + 5e \rightarrow Mn^{2+}(aq) + 8OH^-(aq)$

- a) $Cr_2O_7^{-2}(aq) / Cr^{3+}(aq)$
- b) SO_4^{2-} (aq)/ SO_2 (g)
- c) NO_3^- (aq) / $N_2O_2(g)$