Friday Worksheet

Name:

Fuel cells worksheet 1

1) A hydrogen-oxygen fuel cell can operate with an alkaline electrolyte such as potassium hydroxide. The overall reaction is given below

 $2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(I)$

- a) Write the half-equation for the reaction that occurs at the cathode.
- b) Write the half-equation for the reaction that occurs at the anode.
- c) This hydrogen-oxygen fuel cell uses 1.45×10^{-5} mol of hydrogen gas per second of operation. What is the current produced by this cell?
- d) What is the maximum voltage predicted for one alkaline hydrogen/oxygen fuel cell under standard conditions?

$O_2(g) + 2H_2O(l) + 4e^- \rightleftharpoons 4OH^-(aq)$	+0.40
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$S(s) + 2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}S(g)$	+0.14
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{g})$	0.00
$Pb^{2+}(aq) + 2e^{-} \rightleftharpoons Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$	-0.23
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \Longrightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$	-0.76
$2\mathrm{H}_{2}\mathrm{O}(l) + 2e^{-} \rightleftharpoons \mathrm{H}_{2}(g) + 2\mathrm{OH}^{-}(aq)$	-0.83

2) Which of the following are advantages of modern fuel cells over conventional methods of electricity generation.

i. They generate very little noise.

- ii. They are a cheap source of electricity.
- iii. They enable electricity to be generated on site.
- iv. They have the potential to reduce emissions of carbon dioxide into the atmosphere