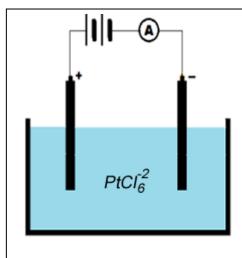
Friday Worksheet

Name:

Electrolysis worksheet 5

- 1) An electrolytic cell attempts to produce chlorine gas by electrolysis of aqueous 0.01M KCl solution using inert electrodes. Gas is produced at both electrodes.
 - a) Give the likely equation to the reaction occurring at the anode.
 - b) Give the likely equation to the reaction occurring at the cathode.
 - c) What happens to the pH of the solution surrounding the anode? Explain
- 2) What mass (in grams) of nickel could be electroplated from a solution of nickel(II) chloride by a current of 0.450 amperes flowing for 5.50 hours?
- 3) Pure aluminium is to be extracted from a large sample of <u>molten</u> AlCl₃. An electrolytic cell is set up to run for 4.50 hours with a current of 0.490 amperes using inert electrodes. At this con etration the Cl⁻ are at concentration of 3.0M.
- a) One student suggested setting up an electrolytic cell using (1.00 M) AlCl₃ solution. What are the products formed at the:


i. cathode -----li. anode -----

b) Another student suggested molten AlCl₃ with the exclusion of water. What are the products formed at the:

i. cathode -----

ii. anode -----

- iii. How many litres of the gas produced at the anode, when measured at 0°C and 101.3 kPa pressure, are produced when the electrode efficiency is only 65%?
- 4) A fine layer of platinum is to be plated onto an iron rod from a solution of $[PtCl_6]^{2-}$, using an average current of 10.0 amperes at an electrode efficiency of 70.0%?
- a) The electrolytic cell shown on the right is used.
 - i. What material should the positive electrode be made from?
 - ii. What is the reaction occurring at the cathode?
- b) How long, in hours, would be required for the electroplating of 88.0 g of platinum

