Ammonia worksheet 4

1) Nitrogen and hydrogen gases were mixed in a reaction vessel within a bomb calorimeter and allowed to form ammonia gas. A volume of 100.0 mL of water in the calorimeter at $25.0\,^{\circ}$ C was heated to $33.1\,^{\circ}$ C. If $70.0\,\%$ of the energy released by the reaction goes into heating up the water and 1.70 grams of ammonia formed write a balanced thermochemical equation for the reaction between hydrogen and nitrogen gases to form ammonia gas.

Step 1 calculate the mol of NH₃ formed

=> 1.70/17.0 = 0.100 mol

Step 2 Calculate the amount of energy released knowing that only 70% goes into heating up the water.

=> Energy = $(4.18 \text{ j/g/}^{\circ}\text{C X } 100.0 \text{ X } 8.1^{\circ}\text{C}) / 0.70 = 4837 \text{ J}$

Step 3 Calculate the energy released per mol of ammonia formed = 9614/0.100 = 48370 J

Step 4 Write the balanced chemical equation

 \Rightarrow 3H₂(g) + N₂(g) \rightleftharpoons 2NH₃(g)

Step 5 Find the Δ**H**

=> since two mol of ammonia form

=> ΔH = -48370 X 2 = 96.73 kJ/mol

Step 6 Thermochemical equation

 $3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -96.73 \text{ kJ/mol}$

- 2) In an experiment, a mixture of H_2 , N_2 and NH_3 was placed in a sealed reaction vessel and allowed to reach equilibrium at a temperature of 470°C. The concentrations of gases at equilibrium were analysed and found to contain 0.121M H_2 , 0.0400M N_2 and 0.00272M NH_3 . Calculate the equilibrium constant at this temperature
- a) Write the equilibrium expression for this reaction.

$$K = [NH_3]^2/[N_2][H_2]^3$$

b) Calculate the equilibrium constant at 472 °C.

$$K = [0.00272]^2/[0.0400][0.121]^3 = 0.104 M^{-2}$$

3) In one experiment, 0.015 mol of $H_2(g)$ and 0.010 mol of $N_2(g)$ are combined in a 2.00 L vessel at 470°C. The mixture is allowed to come to equilibrium and the concentration of $NH_3(g)$ is observed to be 3.20 x $10^{-3}M$. Calculate the equilibrium concentration of $H_2(g)$ at this temperature.

Step 1 Calculate the mol of NH₃ formed.

```
=> n = C \times V = 3.20 \times 10^{-3} M \times 2.00 = 6.40 \times 10^{-3} mol
```

Step 2 Calculate the amount of H₂ gas that reacted to form this amount of NH₃

=> Stoichiometric ratio 3 (H₂): 2(NH₃)

 $=> 3/2 \times 6.40 \times 10^{-3} = 0.00960$

Step 3 find the amount of H₂ left unreacted.

=> 0.015 - 0.00960 = 0.0054 mol

Step 4 Calculate the [H₂]

 $=> 0.0054 / 2.00 = 2.7 \times 10^{-3} M$