Friday Worksheet

Volumetric 3

1) The change in pH as a 0.10 M solution of a NaOH is added to 20.0 mL of a 0.10 M solution of a ethanoic acid is shown below.

Refer to the acid-base indicator data provided in the data book and identify the indicator that would be least suitable to detect the end point of this neutralisation. Explain why.

2) A 30.00 mL aliquot of 0.200 M CH₃COOH (ethanoic acid) is titrated with 0.160 M Ca(OH)₂ solution.

a) Give the equation for the reaction between the ethanoic acid and Ca(OH)2

b) What volume of the $Ca(OH)_2$ solution is required to completely react with the ethanoic acid?

b) Explain, using your chosen acid as an example, why the equivalence point is at a pH significantly above 7.

Acid-base indicators

Name	pH range	Colour change		Ka
		Acid	Base	
Thymol blue	1.2-2.8	red	yellow	2×10^{-2}
Methyl orange	3.1-4.4	red	yellow	2 × 10 ⁻⁴
Bromophenol blue	3.0-4.6	yellow	blue	6 × 10 ⁻⁵
Methyl red	4.2-6.3	red	yellow	8 × 10 ⁻⁶
Bromothymol blue	6.0–7.6	yellow	blue	1×10^{-7}
Phenol red	6.8-8.4	yellow	red	1 × 10 ⁻⁸
Phenolphthalein	8.3-10.0	colourless	red	5 × 10 ⁻¹⁰