Friday Worksheet

Enthalpy and rate worksheet 4

1) To determine the enthalpy change of the reaction between aluminium metal and copper ions, as shown below, a student conducted an experiment.

 $2AI(s) + 3CuSO_4(aq) => 3Cu(s) + AI_2(SO_4)_3(aq) \Delta H =?$

This involved adding a known mass of powdered aluminium to 1.00 M copper (II) sulfate solution in a calorimeter and then measuring the temperature change.

Two separate experiments, A and B, were conducted under the same conditions. In experiment **B** a greater volume of $CuSO_4(aq)$ was used than in **A**. In both experiments, copper sulfate was always in excess. The results of experiment A are shown below.

Temperature °C	Time (seconds)
20.0	0
23.1	2
28.2	4
38.2	8
60.5	15
66.6	17
68.2	18
70.4	19
72.2	20
72.8	21
71.5	22
70.2	23
70.0	24
69.8	25

	Experiment A	Experiment B
Amount of aluminium metal used	0.0500 mol	0.0500 mol
Volume of 1.50 M CuSO ₄ (aq)	50.0 mL	80.0 mL
Initial temperature of the CuSO ₄ (aq)	Y ℃	20 °C
Temperature of solution after the reaction's completion	D°C	X °C

a) Give the temperature of Y $^{\circ}C$ and D $^{\circ}C$

- b) Assume that 4.20 J is needed to raise the temperature of 1.00 mL of solution by 1.00 °C. Use the results of Experiment A to calculate the energy released, in kJ, by the reaction between the aluminium metal and the copper (II) sulfate solution.
- c) Calculate the ΔH of the reaction

- d) Is the temperature reached by the solution in experiment B greater , less than or equal to that of experiment ?. Explain.
- 2) Reactants A and B react according to the equation below.

$$A(g) + 2B(g) \rightleftharpoons AB_2(g) \Delta H = +22 \text{ kJ.mol}^-$$

Indicate whether the statements below are True of False? Offer an explanation

- a) The amount of AB₂ present at equilibrium increases.
- b) The expression [AB₂] increases at equilibrium [A]
- c) The reaction changes to A(g) + 2B (g) \rightleftharpoons AB₂(g) Δ H = -22 kJ.mol⁻
- d) Lowers the value of the equilibrium constant thus allowing more particles to react and increasing the rate at which the reaction proceeds.