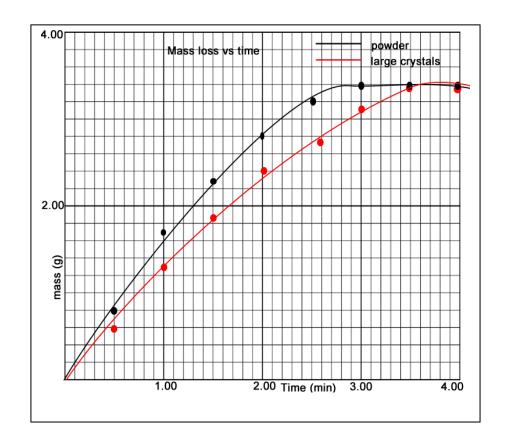
Chemical equilibrium worksheet 7


1) Consider an investigation to measure the rate of reaction between copper sulphide (CuS) and excess hydrochloric acid (HCl) . Both of these reactants react according to the equation below.

CuS(s) + HCl(aq) => H₂S(g) + CuCl₂(aq)

A student measured the mass loss of the open reaction vessel and collected the data tabulated in the table below.

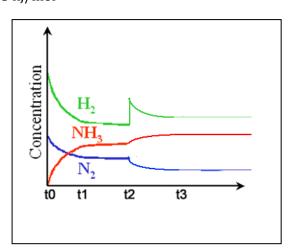
	Reaction mixture total mass loss (grams)	
Time(min)	CuS powder	Large CuS crystals
	In 2M HCI	In 2M HCI
0.00	0.00	0.00
0.50	0.80	0.60
1.00	1.70	1.30
1.50	2.30	1.90
2.00	2.80	2.40
2.50	3.20	2.75
3.00	3.40	3.10
3.50	3.40	3.40
4.00	3.40	3.40

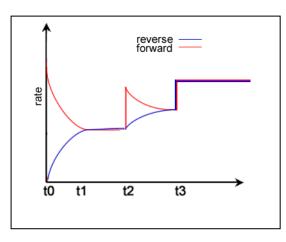
a) Plot the above data on one set of axes on the graphing grid below.

- b) What can you say about the amount of CuS used in both investigations It is the same mass because the total mass loss is the same.
- c) What was the purpose of the experiment?
 To investigate the influence of surface area on rate of reaction
- d) Identify the dependent and independent variables in this experiment

Dependent variable = mass loss

Independent = surface area


e) Outline an experimental technique, in point form, to investigate how concentration influences the rate of a chemical reaction.


(Use the space on the back of this sheet)

- 1) Weigh two identical samples with identical masses of powdered copper sulphide
- 2) Place each in a separate beaker and weigh
- 3) Add excess 0.10 M HCl to the beaker and record the mass every 30 seconds until constant mass.
- 4) Repeat step 3 now using the other beaker of CuS and 2.0 M HCl.
- 5) Plot the results.
- 2) Hydrogen gas and nitrogen gas react to form ammonia gas in a sealed vessel according to the equation below.

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -93 \text{ kJ/mol}$$

- a) Consider the concentration vs time graph on the right.
 - i. What happened at t1?
 - ii. At $t2 H_2$ gas was added to the system. Indicate on the graph how the system responds.
 - iii. At t3 the system reaches equilibrium once more at which point a catalyst is added. Indicate on the graph how the system responds.
- b) Draw, on the set of axes on the right, how the rates of the forward and reverse reactions change as the changes mentioned in a) above take place.

