Friday Worksheet

Name:

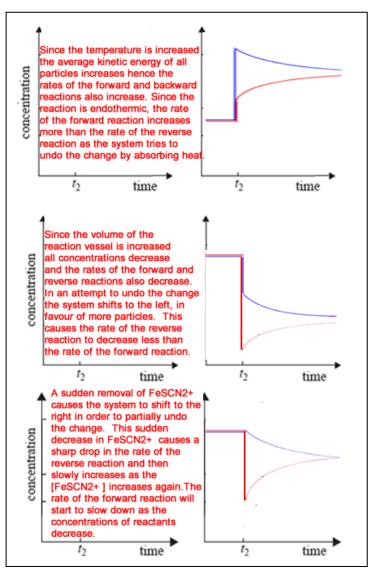
Chemical equilibrium worksheet 5

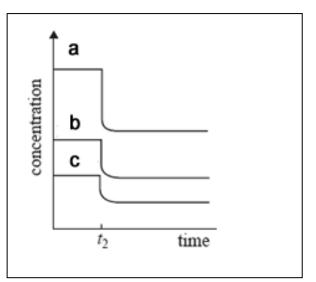
- 1) Consider the following equilibrium
 - Fe³⁺(aq) + SCN⁻(aq) \rightleftharpoons FeSCN²⁺(aq) $\triangle H = positive$ Explain what has happened at t2 in each of the three concentration vs time graphs A, B and C shown on the right.

Complete the rate vs time graph for each. Indicate in red the rate of the reverse reaction and in blue the rate of the forward direction.

- A) Temperature increase
- B) Volume increase
- C) Removal of FeSCN²⁺
- 2) Consider the following equilibrium systems
 a) a(g) + b(g) ≓ c(g)
 b) a(g) + b(g) ≓ 2c(g)
 c) 2a(g) + b(g) ≓ 2c(g)
 i. What happened at t2?

ii. Which equilibrium system is depicted in the diagram on the right?


b)


Explain Equation b) has equal number of particles on both sides of the equation and hence

will not shift in response to a volume change.

iii. How has the equilibrium constant changed at t2?

The equilibrium constant remains unchanged.

- 3) Consider the two equations below. They show ethane burning in atmospheric oxygen.
 - i. $2C_2H_6(g) + 7O_2(g) ---> 4CO_2(g) + 6H_2O(I) \Delta H = -3120 \text{ kJ/mol}$

hence less energy will be given out by the reaction.

- ii. $2C_2H_6(g) + 7O_2(g) ---> 4CO_2(g) + 6H_2O(g) \Delta H = -?kJ/mol$
 - a) Will the magnitude of the ΔH of equation ii) be greater, equal or less than 3120kJ/mol ? Explain.
 Less than 3120 kJ/mol. More energy is needed to keep H₂O as a gas than as a liquid and
 - b) Why do the equations above never reach equilibrium but rather go to completion?

Products are allowed to escape.

c) A pure 0.300 gram sample of ethane is placed in an open reaction vessel with 16.40 grams of pure oxygen gas. The reaction proceeds as shown below. $2C_2H_6(g) + 7O_2(g) ---> 4CO_2(g) + 6H_2O(I) \Delta H = -3120 \text{ kJ/mol}$ The energy from this reaction is used to heat 200.0 grams of water at 25°C. Assuming no energy loss, calculate the final temperature of the water.

Step 1 Find the limiting reactant.

- \Rightarrow Mol of C₂H₆ = 0.300 / 30.0 = 0.0100
- \Rightarrow Mol of O₂ = 16.40 / 32.0 = 0.513
- According to the equation ethane reacts with oxygen gas in the ratio 2:7.
 Hence 0.0100 mol of ethane needs 0.035 mol of oxygen gas. Clearly we have too much oxygen gas.

Step 2 Using the limiting reactant find the amount of energy released in kJ.

- ⇒ According to the equation for every 2 mol of ethane that reacts 3120 kJ
- ⇒ 3120/2 = x/0.0100
- ⇔ 15.6 kJ

Step 3 Calculate the temperature change of the water.

- \Rightarrow Energy(J) = 4.18 X mass X Δ T
- ⇔ 15,600 / (4.18 X 200.0) = ΔT
- ⇒ 18.7°C

Step 4 Find the final temperature.

⇒ 18.7 + 25.0 = 43. 7°C