Friday Worksheet

Name:

Chemical equilibrium worksheet 4

- 1) Consider the equilibrium expression on the right. All species are in the gaseous state.
 - a) Write the chemical equation for the reverse reaction.

 $2A(g) + 3B(g) \Rightarrow 5C(g) + D(g)$

I= \	Multa the all and and an	I				للمالية إن المالية
D)	write the chemica	l equation whos	e equilibrium	expression	is given on	the right

$2A(g) + 3B(g) \Rightarrow 5C(g) + D(g)$	1 K
$5/2 C (g) + \frac{1}{2} D(g) \Rightarrow A(g) + \frac{3}{2}B(g)$	K ¹
$10C(g) + 2D(g) \Rightarrow 4A(g) + 6B(g)$	K ²

2) Hydrogen and fluorine react according to the equation below.

 $H_2(g) + F_2(g) \le 2HF(g) \Delta H = -542 \text{ kJ mol}^-$

In an experiment 0.300 mol of hydrogen and 0.440 mol of fluorine were placed in a reaction vessel of volume V litres. Once equilibrium was established there was 0.320 mol of HF present in the reaction vessel. Calculate the K_e for this reaction.

Since the number of mol of particles on both sides of the equation are the same volume is not a factor in determining the K_e .

Step 1 Find the mol of each reactant and product at equilibrium.

 $n_{hydrogen}$ = 0.140, $n_{fluorine}$ = 0.280, n_{HF} = 0.320

Step 2 calculate K_e

 $K_e = (0.320)^2 / (0.140 \times 0.280) = 2.61$

3) Nitrogen and hydrogen react to produce ammonia according to the equation below.

 $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} \Delta H = +92 \text{ kJ mol}^{-1}$

An amount of 2.00 mol of ammonia was placed in a sealed vessel at a constant temperature and allowed to reach equilibrium.

- a) Explain why the rate of the reaction $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ will never be greater than the rate of the reaction $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$
 - i. as the system approaches equilibrium.

Because the rate of the reverse reaction $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$ is favoured as the system moves towards equilibrium. In order to reach equilibrium the reverse reaction must be faster than the forward reaction $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$

ii. once equilibrium is established.

Rates of reverse and forward reactions are equal at equilibrium.

b) Sketch, on the axes provided below, a fully labelled energy profile diagram for the decomposition reaction of NH₃. Indicate on the diagram the effect of using a catalyst in this reaction

