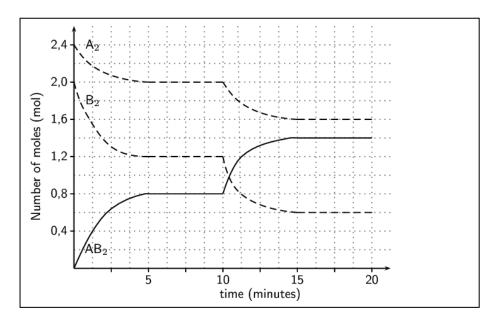

Name:

Friday Worksheet

Chemical equilibrium worksheet 1

1) Consider the graph below of the reaction


- a) How does the rate of the forward and backward reactions compare at the following times
 i) 50 s Rates of forward and backward reactions are equal
 ii) 5 s Rate of forward reaction is greater than the backward reaction.
 iii) 23 s Rate of forward reaction is greater than the backward reaction
- b) What happened at t = 20s? Explain how the system responded by referring to Le Chatellier's principle CO is added and the system responds by shifting to the right to partially undo the change.
- c) Write the equilibrium expression.

[COCI2]	
[CO][CI2]	

d) Calculate the equilibrium constant at t = 40 s

[1.08] [1.50] [0.25] = 2.88M	0.00147
	= 2.88M

e) 2.0 mol of Cl₂ is placed in a 2.0 litre vessel along with 3.0 mol of CO gas at a certain temperature. The mixture was allowed to reach equilibrium and then analysed. It was found to contain 1.5 mol of COCl₂. Calculate the equilibrium constant .
[Cl₂] = [0.50/2.0] = 0.25M, [CO] = [1.50/2.0=0.75M] [COCl₂] = [1.50/2.0]=0.75M K = 0.75M/0.1875M² = 4.0M⁻

2) Consider the chemical equilibrium represented by the unbalanced equation $A_2(g) + B_2(g) \Leftrightarrow AB_2(g) \ \ (+\Delta H).$

and the graph shown above.

 a) How does the rate of the forward and backward reactions compare at the following times

i) 8 min rate forward = rate backwardii) 20 min rate forward = rate backward

- b) What happened at t = 10 min? Explain your answer by referring to Le Chatellier's principle Two possible events
 - 1) Temperature was increased hence driving the endothermic reaction forward to partially undo the change.
 - 2) Since the graph shows number of mol on the y-axis a volume decrease would increase the pressure and drive the equilibrium in the forward direction, direction of least particles, to partially undo the change.
- c) Write the equilibrium expression.
- d) Calculate the equilibrium constant at t = 8 min if the reaction occurred in a 1.50 litre vessel

[AB₂] = 0.80 / 1.50 = 0.533 M [A₂] = 2.0 / 1.5 = 1.33 M [B₂] = 1.2 / 1.50 =0.80 M

 $K_e = (0.533)^2 / (1.33 \times (0.8)^2) = 0.33 M^2$

[AB₂]² [A₂] [B₂]²