Friday Worksheet

Name:

Acid Base equilibria worksheet 1

1) What is the pH of a 100.0 mL 0.325 M H_3BO_3 solution at 25 °C?

 $\begin{aligned} &\mathsf{Ka}_{\mathsf{boric} \; \mathsf{acid}} = 5.8 \; \mathsf{X} \; 10^{-10} \\ &\mathsf{pH} = -\mathsf{log}[\mathsf{H}_3\mathsf{O}^+] \end{aligned}$

Step 1 find the $[H_3O^+]$

 $\Rightarrow K_{a} = \frac{[H_{2}BO_{3}^{-}][H_{3}O^{+}]}{[H_{3}BO_{3}]} = 5.8 \times 10^{-10}$

Since according to the stoichiometry $[H_2BO_3] = [H_3O^+]$ we can write the expression below.

$$\Rightarrow K_{a} = \frac{[H_{3}O^{+}]^{2}}{[H_{3}BO_{3}]} = 5.8 \times 10^{-10}$$

Since Ka is very small assume that negligible amount ionises. So we can write the expression below

$$\Rightarrow \quad \underline{[H_3O^+]^2}_{0.325} = 5.8 \times 10^{-10}$$

- \Rightarrow $[H_3O^+]^2 = 5.8 \times 0.325 \times 10^{-10}$
- \Rightarrow $[H_3O^+]^2 = 1.9 \times 10^{-10}$
- \Rightarrow [H₃O⁺] = 1.4 X 10⁻⁵ = 10^{0.15} X 10⁻⁵ = 10^{-4.85}
- ⇔ pH = 4.85
- 2) Ethanoic acid is a weak monoprotic acid.a) Write the equation that represents the ionisation reaction of ethanoic acid.

 $CH_3COOH(aq) + H_2O(I) \Rightarrow H_3O^+(aq) + CH_3COO^-(aq)$

b) Write the equilibrium expression for this reaction.

 $K_{e} = \frac{[CH_{3}COO^{-}][H_{3}O^{+}]}{[CH_{3}COOH][H_{2}O]}$

c) Write the expression for the Ka of ethanoic acid

 $K_a = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]}$

d) Which has the highest pH and offer an explanation.

i) 10.0 mL 0.100 M HCOOH solution or 100.0 mL 0.100 M CH $_3$ COOH solution

Since the Ka(HCOOH) = 1.8×10^{-4} and the Ka(CH₃COOH) = 1.7×10^{-5} there will be a greater degree of ionisation, at the same concentration, in the methanoic acid solution than the ethanoic acid solution. A greater degree of ionisation leads to a higher [H₃O⁺] and hence a lower pH. So ethanoic acid has the higher pH.

ii) 10.0 mL of 0.01 M HCOOH solution or 10.0 mL 0.100 M HCOOH solution

Dilution increases the extent of ionisation however the $[H_3O^{\scriptscriptstyle +}]$ decreases with dilution.

 $K_{a} = \frac{[H_{3}O^{+}]^{2}}{[HCOOH]} = 1.8 \times 10^{-4}$

$$= \frac{[H_3O^+]^2}{[0.100]} = 1.8 \times 10^{-4}$$

$$= [H_3O^+]^2 = 1.8 \times 10^{-5}$$

=> $[H_3O^+] = 10^{-2.37} \text{ pH for } 0.1 \text{ M HCOOH is } 2.37$

Now for thre 0,01M HCOOH

$$= \frac{[H_3O^+]^2}{[0.010]} = 1.8 \times 10^{-4}$$

$$= [H_3O^+]^2 = 1.8 \times 10^{-6}$$

=> $[H_3O^+] = 10^{-2.87}$ pH for 0.01 M HCOOH is 2.87

e) Explain why diluting a solution of 0.100M HCOOH to 0.001M HCOOH, at constant temperature, increases the percentage ionisation of HCOOH.

 $HCOOH(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$

$$K_a = [HCOO^-][H_3O^+] = 1.8 \times 10^{-4}$$

[HCOOH]

Diluting the solution lowers the concentration of the ions and drives the reaction forward hence ionising a greater percentage of the HCOOH present. Dilution, however, ultimately reduces the $[H_3O^+]$ and increases pH.

3) A 20.00 mL aliquot of 0.200 M CH₃CH₂COOH (propanoic acid) is titrated with 0.250 M NaOH. The equation for the reaction between propanoic acid and NaOH solution is represented below.

 $CH_3CH_2COOH(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CH_3CH_2COO^-(aq)$

a) Write the expression for the acidity constant.

 $K_a = [CH_3CH_2COO^-][H_3O^+]$ $[CH_3CH_2COOH]$

b) What volume of NaOH is required to completely react with the acid.

 $n_{\text{propanoic aicd}} = C X V = 0.02000 X 0.200 = 4 X 10^{-3}$ $n_{NaOH} = 4 \times 10^{-3} / 0.250 = 16.0 \text{ mL}$

c) Calculate the pH of the 0.200 M propanoic acid solution before any NaOH solution has been added.

Ka_{propanoic acid} =1.3 X 10⁻⁵ $pH = -log[H_3O^+]$

Step 1 find the $[H_3O^+]$

$$K_{a} = \frac{[CH_{3}CH_{2}COO^{-}][H_{3}O^{+}]}{[CH_{3}CH_{2}COOH]} = 1.3 \times 10^{-5}$$

 \Rightarrow Since according to the stoichiometry [CH₃CH₂COO⁻] = [H₃O⁺] we can write the expression below.

$$\Rightarrow K_{a} = \frac{[H_{3}O^{+}]^{2}}{[CH_{3}CH_{2}COOH]} = 1.3 \times 10^{-5}$$

⇒ Since Ka is very small assume that negligible amount of propanoic acid ionises. So we can write the expression below

$$\Rightarrow \frac{[H_3O^+]^2}{0.200} = 1.3 \times 10^{-5}$$

- \Rightarrow $[H_3O^+]^2 = 2.60 \times 10^{-6}$
- $\begin{array}{l} \Leftrightarrow \quad [H_3O^+]^2 = 1.61 \times 10^{-3} \\ \Rightarrow \quad [H_3O^+] = 10^{0.207} \times 10^{-3} = 10^{-2.79} \end{array}$