Friday worksheet 9 Hess'Law and enthalpy Name

1. Given the following thermochemical equations $4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(I)$, $\Delta H = -1530$ kJmol⁻¹ $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I)$, $\Delta H = -288$ kJmol⁻¹ Calculate the enthalpy of formation of ammonia.

2.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$$
 $\Delta H = -890 \text{ kJmol}^{-1}$ $CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$ $\Delta H = -284 \text{ kJmol}^{-1}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393 \text{ kJmol}^{-1}$ $\Delta H = -286 \text{ kJmol}^{-1}$

- a) Given the thermochemical equations above write balanced thermochemical equations for the :
 - i. formation of methane (formation of methane from its elements)
 - ii. formation of carbon monoxide (formation of CO from its elements)
 - iii. combustion of methane in limited oxygen to form carbon monoxide and liquid water.
- b) Calculate the enthalpy of formation of glucose according to the equation below $6C(s) + 6H_2(g) + 3O_2(g) \rightarrow C_6H_{12}O_6(s)\Delta H = ?$ Given $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)\Delta H = -1273.3kJ/mol$ and the equations

3.
$$1$$
----- $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ $\Delta H = -890 \text{ kJmol}^{-1}$
 2 ----- $CO(g) + 1/2O_2(g) \rightarrow CO_2(g)$ $\Delta H = -284 \text{ kJmol}^{-1}$
 3 ----- $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393 \text{ kJmol}^{-1}$
 4 ----- $H_2(g) + 1/2O_2(g) \rightarrow H_2O(I)$ $\Delta H = -286 \text{ kJmol}^{-1}$

- 4. When ethanol burns in oxygen under standard conditions CO₂ and liquid water are produced.
 - a. Write a balanced thermochemical equation for the complete combustion of ethanol using information from the Data Booklet .
 - b. Calculate the enthalpy of formation of ethanol given the equations below.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(I) \Delta H = -394kJ/mol$$

C(s) + O₂(g) \rightarrow CO₂(g) $\Delta H = -286kJ/mol$

5. A 5.30 gram sample of pure solid ammonium nitrate is dissolved in 50.0 mL of pure water at $25.0 \,^{\circ}$ C. If the temperature of the water was finally measured at $15.5 \,^{\circ}$ C calculate the ΔH of the equation NH₄NO₃(s) \rightarrow NH₄⁺ (aq) + NO₃⁻ (aq) .