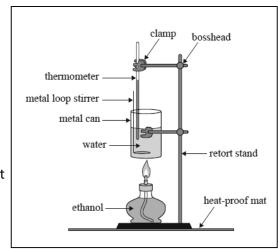
Friday Worksheet

Enthalpy worksheet 8

Consider

1) When 24.6 g of H_2S was burned in excess oxygen, 376 kJ was released. What is the ΔH for the following equation?

$$2 H_2S(g) + 3 O_2(g) \rightarrow 2 SO_2(g) + 2 H_2O(g); \Delta H = ?$$


2) Calculate ΔH for the following equation:

PbCl₂(s) + Cl₂(g) → PbCl₄(I)
$$\triangle H$$
 = ???
Given: 1) ---- Pb(s) + Cl₂(g) → PbCl₂(s) $\triangle H$ ₁ = -359.4 kJ mol⁻
2) ---- Pb(s) + 2 Cl₂(g) → PbCl₄(I) $\triangle H$ ₂ = -329.3 kJ mol⁻

- 3) Give a balanced thermochemical equation for the combustion reaction of liquid octane in excess oxygen at SLC. Show all states and the ΔH of the reaction. You may need to refer to your VCAA Data Booklet
- 4) The enthalpy for the combustion of ethanol is provided in the data book. This combustion of ethanol is represented by the following equation.

$$C_2H_5OH(I) + 3O_2(g) => 2CO_2(g) + 3H_2O(I)$$

A spirit burner used 1.90 g of ethanol to raise the temperature of 100.0 g of water in a metal can from 27.0 °C to 42.0 °C.

a) Calculate the percentage of heat lost, in other words, did not find its way into the water.

b) The heat content of coal is measured kJ/gram. Why is it not measured in kJ/mol?