Friday worksheet 11 – Enthalpy and energy diagrams

- Diesel fuel is used to heat 2.89 kg of water at 25.0 °C to a temperature of 90.0 °C. What mass, in kg, of diesel is needed to heat the water if 30.00% of the energy of combustion is allowed to escape into the environment.
- 2) Consider the chemical reaction given below. $A_2(g) + B_2(g) \rightarrow 2AB(s) \Delta H = +23.45kJ/mol$

The amount of energy needed to break bonds during this reaction is 42.00 kJ/mol .

kJ/mol			
110	reactants		
		kJ/mol	

- i. Draw the energy profile for this reaction on the set of axes above.
 - Label the:
 - Δ*H*
 - Activation energy for both the forward and backward reactions. Give the magnitude of the activation energies.
- ii. What is the energy content of the products?
- iii. Consider the two chemical equations below a) $2AB(s) \rightarrow A_2(g) + B_2(g) \Delta H = ?kJ/mol$
 - b) $A_2(g) + B_2(g) \rightarrow 2AB(g) \Delta H = ?kJ/mol$

How does the ΔH of each of the above two reactions differ from +23.45kJ/mol. Explain