Assignemt - Molecules

1) Complete the table below. <u>Click</u> for a revision on how to draw molecular formulae of molecules.

Molecul	Draw the structural	Intra-molecular	Intermolecular	Symmetry
e	formula	bonding (circle)	bonding (circle)	(circle)
CH ₄	Н	Pure covalent	Dispersion forces	Symmetrical
	H H	Polar covalent	Dipole-dipole H-bonding	Asymmetrical
O ₂		Pure covalent	Dispersion forces	Symmetrical
	Ö=Ö	Polar covalent	Dipole-dipole H-bonding	Asymmetrical
CH ₄ O		Pure covalent	Dispersion forces	Symmetrical
	H H H H	Polar covalent	Dipole-dipole H-bonding	Asymmetrical
CCl₃H		Pure covalent	Dispersion forces	Symmetrical
	CI CI CI H	Polar covalent	Dipole-dipole H-bonding	Asymmetrical
CH ₂ O ₂	Но	Pure covalent	Dispersion forces	Symmetrical
	HO H-Ċ-Ć HO-H	Polar covalent	Dipole-dipole H-bonding	Asymmetrical

NF ₃	F	Pure covalent	Dispersion forces	Symmetrical
		Polar covalent	Dipole-dipole H-bonding	Asymmetrical
H ₂ O	\cap	Pure covalent	Dispersion forces	Symmetrical
	н∕∽н	Polar covalent	Dipole-dipole H-bonding	Asymmetrical

2) Build the molecules shown in the table below using the kits provided and complete the table.

Molecule	Draw the electron dot diagram and give its shape	Symmetry	melting temperature. °C
SO ₂	V-shape	Symmetrical Asymmetrical	16.9
CCI ₄	tetrahedral	Symmetrical Asymmetrical	-23
CH4	H:C:H H:C:H	Symmetrical Asymmetrical	-182

	tetrahedral		
OF ₂	·-shape	Symmetrical Asymmetrical	-223
NH3	H:N:H H Triangular pyramid	Symmetrical Asymmetrical	-78
CO2	linear	Symmetrical Asymmetrical	-79
SO ₃	Triangular planar	Symmetrical Asymmetrical	-72
CH₃OH	H H:Ċ:Ö:H H H tetrahedral	Symmetrical Asymmetrical	-98

4) Usually, the bigger the molecule the higher its melting temperature.

Offer an explanation as to why the melting temperature of

i. SO_3 is lower than the smaller molecule SO_2

 SO_3 is a symmetrical molecule and hence has only weak dispersion forces acting between the molecules. SO_2 is an asymmetrical molecule and so has dipole-dipole bonding as well as dispersion forces.

 CO_2 is lower than SO_3

ii.

Both CO_2 and SO_3 are both symmetrical molecules and hence have only dispersion forces acting as intermolecular bonding. The bigger the molecule the greater the dispersion forces acting , hence SO_3 will have stronger dispersion forces than CO_2

iii. NH_3 is higher than the much heavier molecule OF_2

 NH_3 has H-bonding as well as dispersion forces while OF_2 has dispersion forces and dipole-dipole bonding. H-bonding is a stronger intermolecular force than normal dipole-dipole bonding.

iv. The melting temperature of H_2S is $-82^{\circ}C$ while the melting temperature of water is $0^{\circ}C$. Explain why since there relative size of water is smaller than H_2S .

The <u>intermolecular forces</u> acting between H_2O molecules have H-bonding and dispersion forces while H_2S has only the weaker dipole-dipole and dispersion forces