Revision Unit 1

You may wish to revisit <u>inter-molecular</u> bonding and <u>intra-molecular</u> bonding.

1) Water is boiled in a kettle. Describe the bonds that are broken or created during this activity. Draw a diagram to assist in your explanation.

Hydrogen bonds between the water molecules are broken as the liquid water turns to steam.

2) Carbon dioxide has a molar mass of 44 g/mol while ethanol has a molar mass of 46 g/mol. Although the two molecules are very similar in size they differ greatly in their physical properties. Ethanol is a liquid at room temperature and has a boiling temperature of around 80 °C while carbon dioxide is a gas at room temperature and boils at around -80 °C. Explain why.

Carbon dioxide is a symmetrical molecule and as such has intermolecular forces made up of only, relatively weak, dispersion forces. These forces are easily broken with heat and so CO₂

boils at a very low temperature.

Ethanol on the, on the other hand, has hydrogen bonding as well as dispersion forces. Hydrogen bonding is a strong form of intermolecular bonding and takes more energy to break. This is why ethanol boils at 80 °C.

Substance	Melting Point	Boiling Point	Conduct electricity	Conduct electricity
oubstance	(°C)	(°C)	in solid form?	in liquid form?
A	12	120	No	No
В	800	1200	No	Yes
С	700	1500	yes	Yes
D	145	200	No	No
E	-95	-12	No	No

3) The following table provides information about the physical properties of 5 substances.

i. Which substance is most likely a metal?

C. Metals have relatively high melting temperatures and conduct electricity in both the solid and molten state.

- ii. Which substance is very brittle?B lonic substances are brittle and have relatively high melting temperatures. Ionic compounds conduct electricity in the molten but not the solid states.
- iii. Which substances are likely to be molecular substances?A, D and E are likely candidates. They have relatively low boiling temperatures and do not conduct electricity in both the solid and liquid states.
- iv. One of the substances is known to be composed of non-polar molecules. Which is the likely substance?
 E is the likely substance. Non-polar molecules tend to have weak intermolecular forces of attraction (dispersion). This means they have very low boiling and melting temperatures.
- 4) Consider the following substances. CH₃F, CH₃OH, CO₂, CH₃COOH.
 - What is the intra-molecular bonding in all of these molecules? CH₃F=Dispersion forces and dipole-dipole bonding CH₃OH=dispersion forces and hydrogen bonding CO₂ =dispersion forces CH₃COOH= dispersion forces and hydrogen bonding
 - ii. Which molecules have inter molecular forces composed of dispersion forces only? CO₂
 - Which molecules have a high degree of solubility in water?
 Like dissolves like. Since water has hydrogen bonding it will dissolve substances which also show hydrogen bonding.

Molecule	Electron dot diagram	Molecular shape
CO2	$\ddot{o} = c = \ddot{o}$:O=C=O: Linear
CF₄	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	F F F Tetrahedral
ΝH₃	: л н н	H H H Triangular pyramid
H₂S	H : S : H	H S H V-shape

5) Revise Lewis dot diagrams You may also wish to revise polar molecules

ii. Explain how the octet rule is used to draw electron dot diagrams?

The octet rule states that atoms prefer to have an outer shell with eight electrons.

The octet rule is used in Lewis dot diagrams to arrange bonding electrons so that each atom, apart from hydrogen, obeys the Octet Rule.

3) A substance is composed of three isotopes listed below along with their percentage abundance. Calculate the relative atomic mass of the element. Revise isotopes at this <u>link</u>.

	Isotope	Relative Isotopic Mass	Abundance (%)		
	35	34.98	45.0		
	32	31.96	15.0		
	31	31.01	40.0		
relative atomic mass = =		34.98 X 45.0 + 31.96 X 15.0 + 31.01 X 40.0			
		= 32.94 amu	0		

4) Write the electronic configuration of the following species.

- i. K⁺ 1s² 2s² 2p⁶ 3s² 3p⁶
- ii. Fe²⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶
 The neutral iron atom has the following configuration 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁶ 4s²
 Now take 2 electrons from the furthest (4s) orbital to make the Fe²⁺. Electrons are removed from the 4s first as they are further from the nucleus than the 3d.
- iii. Cr $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4S^1$
- iv. Which excited cation with a 2+ charge does this electronic configuration belong to? 1s²2s²2p⁶3s²3p⁶4s¹3d⁴
 The original neutral atom has 25 electrons. Since it is neutral it must also have 25 protons which makes it Mn.
 <u>Read</u> more on electronic configuration.