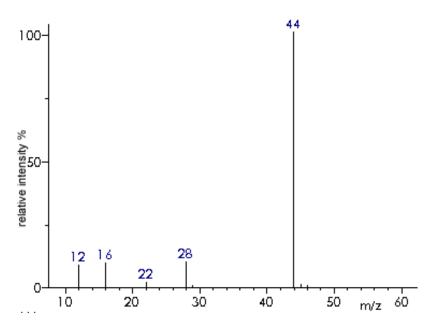

Friday Worksheet Mass spectroscopy 3

Name:

1) Select the species that produces the molecular ion peak in the mass spectrum of the compound below.

- i) [CH₃CH₂CH₂COOCH₂CH₃]⁺
- ii) [CH₃CH₂CH₂COOCH₂CH₃]²⁺
- iii) [CH₃CH₂CH₂COOCH₂CH₃]⁻
- iv) CH₃CH₂CH₂COOCH₂
- 2) Which of the species above cannot be formed in a mass spectrometer? Explain Negative charged fragments cannot form in the mass spectrometer. Positive charged fragments as well as neutral fragments can form. The answer is (iii).
- 3) Below is the mass spectrum of ethyl bromide (C₂H₅Br)



- a) What fragment caused the peak at m/z 29? $C_2H_5^+$
- b) Why are there two peaks around m/z 110? This is due to the two isotopes, ⁷⁹Br and ⁸¹Br
- c) The peak at m/z 29 represents the loss of what fragment from the molecule? Br

d) What do the peaks at m/z 108 and 110 indicate about the relative abundance of the isotopes $^{79}{\rm Br}$ and $^{81}{\rm Br}$

The 79 Br isotope is slightly more abundant than the 81 Br isotope.

4) Below is a mass spectrum of a molecule.

a) Identify the parent ion peak

m/z 44

- b) Identify the base peak m/z 44
- c) What fragment caused the peak at m/z 22 and 28? CO_2^{2+} at m/z 22 and CO^+ at m/z 28
- d) Identify the molecule

 CO_2